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Abstract

We describe entanglement as a racemic mixture that has an equal amount (50 : 50) of left- and right-handed
enantiomers. Louis Pasteur separated two enantiomeric isomers in 1848. Therefore, we want to introduce the
Pasteur racemic sphere where all antipodes on this sphere represent the strong anticorrelation of enantiomers
(anticorrelated singlet state). This strong anticorrelation is expressed via the trigonometric functions: the
versine20 = 2 sin260 and the vercosine20 = 2 cos20 for the central angle 26 in the unit circle with R = 1. These
trigonometric functions describe the active surface of the spherical caps of both enantiomers during their
reactions in the polarizing beamsplitters. The experimentalist will get correlation probabilities P++, P--, P+-,
and P-+ for individual settings and the correlation coefficient E = - cos(26). The “colors” of enantiomers are
depicted in the primary and secondary (complementary) colors inspired by the quantum chromodynamics
school. The individual enantiomers are “white” and the formed pair of anticorrelated enantiomers is “white”
as well. The individual polarizers change the original “color” of enantiomers. The resulting “color” of
enantiomers can be expressed via the both trigonometric functions. This mathematical description is identical
with quantum mechanics predictions. These “color” enantiomers represent the “local hidden variables” and
explain the independent and immediate reactions with both polarizers. This proposal could reopen the door to
the Einstein’s intuition expressed in the EPR paradox. Based on the old French school and their polarization
studies, we can modify the correlation coefficients by optical active molecules in one path and optical inactive
molecules in the other path. With the knowledge of the specific rotation of used optical active molecules we
can prepare “tailor-made” correlation coefficients.
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1. Introduction

Since 1935, the Einstein-Podolsky-Rosen (EPR)
argument has provoked sustained debate about
the completeness of quantum mechanics and the
possibility of the existence of hidden variables [1]-
[10]. In 1964, Bell provided inequalities enabling

hidden-variable ideas or seek fresh physical pictures
for the observed correlations[45]—[58]. The prevailing
consensus holds that local hidden-variable theories
are excluded. Yet it is still reasonable to ask whether
a neglected, historically inspired avenue remains —
one that reframes the correlation without invoking

decisive experiments to contrast local hidden-
variable models with quantum predictions [11] —
[20]. Successive, increasingly loophole-tight tests
have agreed with quantum theory and ruled out broad
classes of local hidden-variable explanations [21] —
[44]. Despite this, new proposals periodically revisit

superluminal causation. In this paper we revisit the
experiment of Louis Pasteur with the experimentally
separated enantiomers. Pasteur founded the research
school termed as the optical isomerism in 1848 [59],
[60]. In 1964, Gell-Mann, Zweig and Greenberg
started the quantum chromodynamics (QCD) school
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for the interpretation of subnuclear events [61] —
[63]. The rules of this QCD school can be applied
for description of both enantiomers. The aim of this
contribution is not to dispute the empirical success
of Bell-type experiments, but to explore whether a
historically rooted, physically transparent mechanism
can coexist with the established formalism while
offering new, testable predictions.

2. Properties of Entangled Photons -
Enantiomers

Descartes proposed that “light globules” rotate with
the same speed as is their longitudinal speed [64].
Descartes” intuition is shown in Figure 1. This earlier
Descartes” proposal can be expressed in Figure 2 as
the rotation of two photon enantiomers.

Figure 2. Rotation of two photon enantiomers in the opposite directions. Photons with mass m rotate around the empty center with
their inertia I and the angular velocity w. The quantum of the moment of inertia introduced Bjerrum in 1912 [65].

The rotation of photon mass around the empty center
can be described by its moment of inertia I and its
angular velocity ® (the quantum of the moment of
inertia was proposed by Bjerrum in 1912 [65]).

h | )2 c ml ¢
—=w=m| — | —=
2p 2p) 1 2p

where h/2x is the reduced Planck constant.

In order to describe the entangled photons as two
correlated enantiomers we will define the color
orientations of those photons in Table I. This model
was inspired by the quantum chromodynamics (QCD)

2p (1) school - the free particles should be “white”.

Table 1. The Color Description of Enantiomers
[ Color direction Color Position
|- Red (R) -
|- Green (G +=
P> Blue (B) y
O Cyan (G+B) -
- Magenta (R+B) -
O Fellow (R-+HG) -5

‘3 White (R+G+B) Enantiomer

' Whate (C+BA+Y) Enantiomer
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Figure 3 depicts the color orientation of enantiomers in the direction towards Alice and Bob.

ALICE

Figure 3. Color position of entangled enantiomers in the direction towards Alice and Bob. The statistical occurrence of both
enantiomers is 50.:50.

3. The Pasteur Racemic Mixture

Figure 4. Shows the color spheres of enantiomers that

were not rotationally modified during their flights.
Alice and Bob see the complementary colors.

Bob “s entangled particle
red view

Alice “s entangled particle
cyan view

Bob “s entangled particle
cyanview

Alice “s entangled particle
red view

Figure 4. Color view of enantiomers approaching towards Bob and Alice. In this case both enantiomers were not modified during
their flights. The statistical occurrence of both enantiomers is 50:50.

4. Correlation Coefficient of Enantiomers

There is the interesting Central Angle Theorem: The
central angle subtended by two points on a circle is
twice the inscribed angle subtended by those points.
The Central Angle Theorem states that the measure
of inscribed angle APB is always half the measure of
the central angle AOB — Fig. 5. This theorem holds
when P is in the major arc. If P is in the minor arc
(that is, between A and B), then the inscribed angle
is the supplement of half the central angle. This is
an important property of this circle. The detector P
“sees” those two points A and B in any position of
detector under the angle 26.

There is one more important property of the
enantiomer sphere — the surface of the both spherical
caps. For the central angle 20 we can use the
trigonometric functions versine and vercosine.

Open Access Journal of Physics V8. I1. 2026

versin 20 = 1- cos 20 =2 sin’f @
vercosin 20 = 1+ cos 20 =2 cos’d 3)

The surface of both spherical caps is given as.
= 2nR R (1-cos 26) = 47R’sin0 @)
S,= 2nR R (I+ cos 26) = 41R” cos 0 )
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B

P

Figure 5. The central Angle Theorem: the central angle subtended by two points on a circle is twice the inscribed angle subtended
by two points. The detector “sees’ those two points in any position under the angle 20.

Figure 6 depicts the surface of both spherical caps. We
assume that the “active” the surface of spherical caps
plays a very importantrole during flight of enantiomers
through the polarizing beamsplitter. The joint action
of the polarizing beamsplitter and the “active” surface
of approaching enantiomer will decide the path to
the + channel direction or the — channel direction.

Based on these + directions at Alice and Bob sites the
complete statistical evaluation can be determined —
Figure 7. From the sizes of individual surfaces of those
spherical caps, we can determine the probabilities
P., P, P, and P . The correlation coefficient E is
identical with the prediction of quantum mechanics
for the anticorrelated singlet.

o

S=47R *sin’0

S=471:Ri cos’ 0

Figure 6. The surface of both spherical caps with the central angle 26.

Figure 7. The active surfaces of both spherical caps with the central angle 26 determine the probabilities and the final correlation
coefficient E can be calculated. The geometrical analyses of individual contributions are based on the size of surfaces.

2*47R* (P +P _-P,_-P )

5. Old French School with Enantiomers

There is very well known that the Old French Masters
founded the scientific field with the polarized light.
E.g., Etienne-Louis Malus, Louis Pasteur, Jean
Baptiste Biot, Augustin-Jean Fresnel, Frangois Arago,
Frédéric Wallerant, Aimé Cotton, Francis Perrin, and
Alain Aspect with his coworkers — all contributed
significantly to the study of polarized light [66].

E = 6
2% AR 2 ( )
2% 47 R? [%siﬂzﬂ + %sinzﬁ = %coszﬁ - %coszﬁj
B 2% AnR> (7
= 1si_nzﬂ + lsinzﬂ - lc:oszﬁ - lc:us.zt‘} =-cos 20 (8)
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Figure 8. A modification of the Alain Aspect Experiment with optically active molecules in one path while in the other path will be

optically inactive moleculeS.

Therefore, we propose to modify the “Alain Aspect
Experiment” with introduction of optically active
molecules, with their known specific rotation, into one
path of the observed enantiomers. This modification
can create “tailor-made” correlations between Alice
and Bob — see Figure 8.

6. Conclusions

This entanglement model is not just a reinterpretation
of standard correlation formulas. Based on the element
of physical reality — the existence of enantiomers —
a new derivation of the correlation coefficient was
proposed. This “visible” parameter can be manipulated
by the presence of optically active molecules and thus
the resulting correlation coefficient can be modified
beyond the predictions of quantum mechanics.

1. The entangled particles were described as two
anticorrelated enantiomers.

2. These enantiomers were modeled by the rules of
quantum chromodynamics.

3. The “element of the physical reality is the “active”
surface of spherical caps of enantiomers.

4. The correlation coefficient can be “tailor-made”
by the insertion of optically active molecules into
one path of used settings for these experiments.
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